Современные тенденции развития наноматериалов и их применение в медицине
DOI:
https://doi.org/10.52889/Ключевые слова:
наноматериал, регенерация тканей, наночастицы, нанокристаллыАннотация
Наноматериалы представляют собой перспективный класс биоматериалов с широким применением в медицине, особенно в тканевой инженерии, травматологии и регенеративной медицине. Среди них наноцеллюлоза, получаемая из возобновляемых растительных источников, выделяется благодаря высокой механической прочности, большой поверхности, биодеградируемости и антимикробным свойствам. Эти характеристики делают ее привлекательной для заживления ран, доставки лекарств и восстановления костной ткани.
Однако наноцеллюлоза не обладает собственной биологической активностью, необходимой для стимуляции регенерации костей. Для решения этой проблемы разрабатываются композиты, объединяющие наноцеллюлозу с остеоактивными материалами - фосфатами кальция, силикатами и углеродными нанотрубками. Такие сочетания улучшают механические свойства, биоактивность и контролируемость деградации, что делает их перспективными для создания костных имплантатов.
Предклинические исследования, включая модели дефектов бедренной кости у крыс показали, что композиты на основе наноцеллюлозы обеспечивают регенерацию костной ткани на уровне или выше по сравнению с традиционными материалами, такими как аутологичные сгустки крови. Гистологический анализ выявил хорошую интеграцию с тканями, слабую воспалительную реакцию, достаточную васкуляризацию и низкий риск бактериального заражения.
Обзор обобщает достижения в использовании наноцеллюлозы в регенерации костей и травматологии, отмечает ее ограничения, а также перспективы дальнейшего развития и клинического применения.
Библиографические ссылки
1. Babilotte, J., Guduric, V., Le Nihouannen, D., Naveau, A., Fricain, J. C., Catros, S. (2019). 3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(8), 2579-2595. https://doi.org/10.1002/jbm.b.34348
2. Zhou, W., Tangl, S., Reich, K. M., Kirchweger, F., Liu, Z., Zechner, W., Rausch-Fan, X. (2019). The Influence of Type 2 Diabetes Mellitus on the Osseointegration of Titanium Implants with Different Surface Modifications—A Histomorphometric Study in High-Fat Diet/Low-Dose Streptozotocin–Treated Rats. Implant dentistry, 28(1), 11-19. https://doi.org/10.1097/id.0000000000000836
3. Zhou, W., Kuderer, S., Liu, Z., Ulm, C., Rausch‐Fan, X., & Tangl, S. (2017). Peri‐implant bone remodeling at the interface of three different implant types: a histomorphometric study in mini‐pigs. Clinical Oral Implants Research, 28(11), 1443-1449. https://doi.org/10.1111/clr.13009
4. Mauffrey, C., Barlow, B. T., & Smith, W. (2015). Management of segmental bone defects. JAAOS-Journal of the American Academy of Orthopaedic Surgeons, 23(3), 143-153. https://doi.org/10.5435/jaaos-d-14-00018
5. Osorio, D. A., Lee, B. E., Kwiecien, J. M., Wang, X., Shahid, I., Hurley, A. L., & Grandfield, K. (2019). Crosslinked cellulose nanocrystal aerogels as viable bone tissue scaffolds. Acta biomaterialia, 87, 152-165. https://doi.org/10.1016/j.actbio.2019.01.049
6. Ho-Shui-Ling, A., Bolander, J., Rustom, L. E., Johnson, A. W., Luyten, F. P., Picart, C. (2018). Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 180, 143-162. https://doi.org/10.1016/j.biomaterials.2018.07.017
7. Waldrop, R., Cheng, J., Devin, C., McGirt, M., Fehlings, M., & Berven, S. (2015). The burden of spinal disorders in the elderly. Neurosurgery, 77, S46-S50. https://doi.org/10.1227/neu.0000000000000950
8. Roseti, L., Parisi, V., Petretta, M., Cavallo, C., Desando, G., Bartolotti, I., & Grigolo, B. (2017). Scaffolds for bone tissue engineering: state of the art and new perspectives. Materials Science and Engineering: C, 78, 1246-1262. https://doi.org/10.1016/j.msec.2017.05.017
9. Khan, S., Siddique, R., Huanfei, D., Shereen, M. A., Nabi, G., Bai, Q., Bowen, H. (2021). Perspective applications and associated challenges of using nanocellulose in treating bone-related diseases. Frontiers in Bioengineering and Biotechnology, 9, 616555. https://doi.org/10.3389/fbioe.2021.616555
10. Habibi, Y., Lucia, L. A., & Rojas, O. J. (2010). Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 110(6), 3479-3500. https://doi.org/10.1021/cr900339w
11. Adiga, S. P., Jin, C., Curtiss, L. A., Monteiro‐Riviere, N. A., & Narayan, R. J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(5), 568-581. https://doi.org/10.1002/wnan.50
12. Alshehri, R., Ilyas, A. M., Hasan, A., Arnaout, A., Ahmed, F., & Memic, A. (2016). Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity: miniperspective. Journal of medicinal chemistry, 59(18), 8149-8167. https://doi.org/10.1021/acs.jmedchem.5b01770
13. Usui, Y., Haniu, H., Tsuruoka, S., & Saito, N. (2012). Carbon nanotubes innovate on medical technology. Medicinal Chemistry, 2(02), 105. https://doi.org/10.4172/2161-0444.100010514. Zhang, Y., Bai, Y., & Yan, B. (2010). Functionalized carbon nanotubes for potential medicinal applications. Drug discovery today, 15(11-12), 428-435. https://doi.org/10.1016/j.drudis.2010.04.005
15. Singh, B. G. P., Baburao, C., Pispati, V., Pathipati, H., Muthy, N., Prassana, S. R. V., & Rathode, B. G. (2012). Carbon nanotubes. A novel drug delivery system. International Journal of Research in Pharmacy and Chemistry, 2(2), 523-532. Available from URL: http://www.researchjournal.gtu.ac.in/News/9.%20Pharmacy%20-Final.pdf
16. Kateb, B., Yamamoto, V., Alizadeh, D., Zhang, L., Manohara, H. M., Bronikowski, M. J., & Badie, B. (2010). Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization. In Immunotherapy of Cancer: Methods and Protocols (pp. 307-317). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-60761-786-0_18
17. Zhang, W., Zhang, Z., & Zhang, Y. (2011). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale research letters, 6, 1-22. https://doi.org/10.1186/1556-276x-6-555
18. Jiang, L., Liu, T., He, H., Pham-Huy, L. A., Li, L., Pham-Huy, C., & Xiao, D. (2012). Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes. Journal of Nanoscience and Nanotechnology, 12(9), 7271-7279. https://doi.org/10.1166/jnn.2012.6562
19. Chen, Z., Pierre, D., He, H., Tan, S., Pham-Huy, C., Hong, H., & Huang, J. (2011). Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. International journal of pharmaceutics, 405(1-2), 153-161. https://doi.org/10.1016/j.ijpharm.2010.11.034
20. Elhissi, A., Ahmed, W., Dhanak, V., & Subramani, K. (2012). Carbon nanotubes in cancer therapy and drug delivery. In Emerging nanotechnologies in dentistry (pp. 347-363). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-7862-1.00020-1
21. Rosen, Y., Mattix, B., Rao, A., & Alexis, F. (2011). Carbon nanotubes and infectious diseases. Nanomedicine in Health and Disease, 10, 249-267.
22. Lalevée, G., David, L., Montembault, A., Blanchard, K., Meadows, J., Malaise, S., Sudre, G. (2017). Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter, 13(37), 6594-6605. https://doi.org/10.1039/c7sm01215b
23. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., & De La Caba, K. (2017). Chitosan as a bioactive polymer: Processing, properties and applications. International journal of biological macromolecules, 105, 1358-1368. https://doi.org/10.1016/j.ijbiomac.2017.07.087
24. Wu, L. X., Qiao, Z. R., Cai, W. D., Qiu, W. Y., & Yan, J. K. (2019). Quaternized curdlan/pectin polyelectrolyte
complexes as biocompatible nanovehicles for curcumin. Food Chemistry, 291, 180-186. https://doi.org/10.1016/j.foodchem.2019.04.029
25. Vijitha, R., Reddy, N. S., Nagaraja, K., Vani, T. J. S., Hanafiah, M. M., Venkateswarlu, K. & Rao, K. M. (2021). Fabrication of polyelectrolyte membranes of pectin graft-copolymers with PVA and their composites with phosphomolybdic acid for drug delivery, toxic metal ion removal, and fuel cell applications. Membranes, 11(10), 792. https://doi.org/10.3390/membranes11100792
26. Efimov, S. V., Matsiyeuskaya, N. V., Boytsova, O. V., Akhieva, L. Y., Kvasova, E. I., Harrison, F., Rossi, J. F. (2021). The effect of azoximer bromide (Polyoxidonium®) in patients hospitalized with coronavirus disease (COVID-19): an open-label, multicentre, interventional clinical study. Drugs in Context, 10, 2020-11. https://doi.org/10.7573/dic.2020-11-1
27. Vainio, U., Lauten, R. A., & Serimaa, R. (2008). Small-angle X-ray scattering and rheological characterization of aqueous lignosulfonate solutions. Langmuir, 24(15), 7735-7743. https://doi.org/10.1021/la800479k
28. Zheng, Y., Wu, Y., Yang, W., Wang, C., Fu, S., & Shen, X. (2006). Preparation, characterization, and drug release in vitro of chitosan-glycyrrhetic acid nanoparticles. Journal of Pharmaceutical Sciences, 95, 181–191.
https://doi.org/10.1002/jps.20399 29. Kesavan, K., Kant, S., Singh, P. N., & Pandit, J. K. (2013). Mucoadhesive chitosan-coated cationic
microemulsion of dexamethasone for ocular delivery: In vitro and in vivo evaluation. Current Eye Research, 38, 342–352. https://doi.org/10.3109/02713683.2012.745879
30. Winkler, J., & Ghosh, S. (2018). Therapeutic potential of fulvic acid in chronic inflammatory diseases and diabetes. Journal of diabetes research, 2018(1), 5391014. https://doi.org/10.1155/2018/5391014
31. Van Eerdenbrugh, B., Van den Mooter, G., & Augustijns, P. (2008). Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. International journal of pharmaceutics, 364(1), 64-75. https://doi.org/10.1016/j.ijpharm.2008.07.023
32. Möschwitzer, J., & Müller, R. H. (2006). New method for the effective production of ultrafine drug nanocrystals. Journal of nanoscience and nanotechnology, 6(9-10), 3145-3153. https://doi.org/10.1166/jnn.2006.480
33. Petersen, R. (2006). Nanocrystals for topical cosmetic formulations and method of production. U.S. Patent Application No. 60/886,233.
34. Sucker, H., & Gassmann, P. (1992). Pharmaceutical compositions improvement. European Patent No. 0580690.
35. List, M., & Sucker, H. (1988). Pharmaceutical colloidal hydrosols for injection. UK Patent No. 2200048.
36. Auweter, H., Bon, H., Heger, R., et al. (2002). Precipitated water-insoluble dyes in colloidal dispersed form. U.S. Patent No. 6494924.
37. Auweter, H., André, V., Horn, D., & Lüddecke, E. (1998). The function of gelatin in controlled precipitation processes of nanosize particles. Journal of dispersion science and technology, 19(2-3), 163-184. https://doi.org/10.1080/01932699808913170
38. Hancock, B. C., & Zografi, G. (1997). Characteristics and significance of the amorphous state in pharmaceutical systems. Journal of pharmaceutical sciences, 86(1), 1-12. https://doi.org/10.1021/js9601896
39. Shegokar, R., & Müller, R. H. (2010). Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. International journal of pharmaceutics, 399(1-2), 129-139. https://doi.org/10.1016/j.ijpharm.2010.07.044
40. Kandhola, G., Park, S., Lim, J. W., Chivers, C., Song, Y. H., Chung, J. H., & Kim, J. W. (2023). Nanomaterialbased scaffolds for tissue engineering applications: a review on graphene, carbon nanotubes and nanocellulose. Tissue Engineering and Regenerative Medicine, 20(3), 411-433. https://doi.org/10.1007/s13770-023-00530-3
41. Zhang, Y., Jiang, S., Xu, D., et al. (2023). Application of nanocellulose-based aerogels in bone tissue engineering: Current trends and outlooks. Polymers (Basel), 15(10), 2323. https://doi.org/10.3390/polym15102323
42. Malekpour, K., Hazrati, A., Khosrojerdi, A., Roshangar, L., & Ahmadi, M. (2023). An overview to nanocellulose clinical application: Biocompatibility and opportunities in disease treatment. Regenerative Therapy, 24, 630-641. https://doi.org/10.1016/j.reth.2023.10.006
43. Cañas-Gutiérrez, A., Toro, L., Fornaguera, C., Borrós, S., Osorio, M., Castro-Herazo, C., & Arboleda-Toro, D. (2023). Biomineralization in three-dimensional scaffolds based on bacterial nanocellulose for bone tissue engineering: Feature characterization and stem cell differentiation. Polymers, 15(9), 2012. https://doi.org/10.3390/polym15092012
44. Gomez-Gualdrón, D. A., Burgos, J. C., Yu, J., & Balbuena, P. B. (2011). Carbon nanotubes: Engineering biomedical applications. Progress in Molecular Biology and Translational Science, 104, 175–245. https://doi.org/10.1016/B978-0-12-416020-0.00005-X
45. Lamberti, M., Pedata, P., Sannolo, N., Porto, S., De Rosa, A., Caraglia, M. (2015). Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers.
International journal of immunopathology and pharmacology, 28(1), 4-13. https://doi.org/10.1177/0394632015572559
46. Eivazzadeh-Keihan, R., Maleki, A., De La Guardia, M., Bani, M. S., Chenab, K. K., Pashazadeh-Panahi, P., Hamblin, M. R. (2019). Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. Journal of advanced research, 18, 185-201. https://doi.org/10.1016/j.jare.2019.03.011 47. Gultepe, E., Nagesha, D., Sridhar, S., & Amiji, M. (2010). Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Advanced Drug Delivery Reviews, 62(3), 305–315.
https://doi.org/10.1016/j.addr.2009.11.003
48. Adiga, S. P., Jin, C., Curtiss, L. A., Monteiro‐Riviere, N. A., & Narayan, R. J. (2009). Nanoporous membranes for medical and biological applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1(5), 568-581. https://doi.org/10.1002/wnan.50
Загрузки
Опубликован
Выпуск
Раздел
Лицензия

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.